## Esiebert



Operating instructions
C9302-S0, C9302-T0
Control computer for XC-Boards ${ }^{\circledR}$ with serial interface

| GERMANY | FRANCE |
| :--- | :--- |
| Siebert Industrieelektronik GmbH | Siebert France Sarl |
| Siebertstrasse, D-66571 Eppelborn | 33 rue Poincaré, BP 90 334, F-57203 Sarreguemines Cédex |
| Phone +49 (0)6806 980-0, Fax +49 (0)6806 980-999 | Phone +33 (0)3 87 98 63 68, Fax +33 (0)3 87 98 6394 |
| www.siebert.de, info@siebert.de | www.siebert.fr, info@siebert.fr |
|  |  |
| AUSTRIA | NETHERLANDS |
| Siebert Österreich GmbH | Siebert Nederland B.V. |
| Mooslackengasse 17. A-1190 Wien | Korenmaat 12b, NL-9405 TJ Assen |
| Phone +43 (0)1 890 63 86-0, Fax +43 (0)14 890 63 86-99 | Phone +31 (0)592-305868, Fax +31 (0)592-301736 |
| www.siebert-oesterreich.at, info@siebert-oesterreich.at | www.siebert-nederland.nl, info@siebert-nederland.nl |
|  |  |
|  | SWITZERLAND |
|  | Siebert AG |
| © Siebert Industrieelektronik GmbH | Bützbergstrasse 2, Postfach 91, CH-4912 Aarwangen |
|  | Phone +41 (0)62 922 18 70, Fax +41 (0)62 922 33 37 |
|  | www.siebert.ch, info@siebert.ch |

This operation manual has been prepared with the utmost care. However, we do not accept any liability for possible errors. We always appreciate your suggestions for improvement, corrections, comments and proposals. Please contact us: redaktion@siebert.de
Siebert ${ }^{\circledR}$, LRD $^{\circledR}$ and XC-Board ${ }^{\circledR}$ are registered trademarks of Siebert Industrieelektronik GmbH. All other product names mentioned herein may be the trademarks or registered trademarks of their respective owners.

We reserve the right to make alternations to the technical data and delivery options without notice. - All rights reserved, including the rights of translation. No part of this document may in any form or by any means (print, photocopy, microfilm or any other process) be reproduced or by using electronic systems be processed, copied, or distributed without our written permission.

Table of contents

| Chapter 1 | Safety precautions | Important information <br> Safety <br> Intended use <br> Mounting and installation <br> Grounding <br> EMC measures <br> Disposal |
| :---: | :---: | :---: |
| Chapter 2 | Unit description | XC-Board ${ }^{\circledR}$ <br> Central Processing Unit <br> Principle circuit diagram <br> Relay cards <br> Parameterization <br> Serial Interface <br> Function inputs <br> Auxiliary voltage <br> Menu display <br> Menu buttons <br> Switching output <br> Status indicators |
| Chapter 3 | Control | Serial Interface <br> Addressing <br> Broadcast address <br> Protocol <br> Flashing <br> Brightness <br> Blanking <br> Decimal point <br> Leading-zero suppression <br> Display test <br> LED color <br> Power-on reset <br> Overflow <br> Switching output <br> Relay cards <br> Time-out <br> Character set for numeric display fields <br> Character set for alphanumeric display fields |
| Chapter 4 | Parameterization | Menu display Menu operation Menu table |
| Chapter 5 | Technical data | Switching output <br> Screw clips <br> Ambient conditions |

Read these operating instructions before starting the unit. They provide you with important information on the use, safety and maintenance of the units. This helps you to protect yourself and prevent damage to the unit.

1Information intended to help you to avoid death, bodily harm or considerable damage to property are highlighted by the warning triangle shown here; it is imperative that this information be properly heeded.
The operating instructions are intended for trained professional electricians familiar with the safety standards of electrical technology and industrial electronics.
Store these operating instructions in an appropriate place.
The manufacturer is not liable if the information in these operating instructions are not complied with.

©Components inside the units are energized with electricity during operation. For this reason, mounting and maintenance work may only be performed by professionally-trained personnel while observing the corresponding safety regulations.
The repair and replacement of components and modules may only be carried out by the manufacturer for safety reasons and due to the required compliance with the documented unit properties.
The units do not have a power switch. They are operative as soon as the operating voltage is applied.

The units are intended for use in industrial environments. They may only be operated within the limit values stipulated by the technical data.
When configuring, installing, maintaining and testing the units, the safety and accident-prevention regulations relevant to use in each individual case must be complied with.
Trouble-free, safe operation of the units requires proper transport, storage, installation, mounting and careful operation and maintenance of the units.

The attachment options for the units were conceived in such a way as to ensure safe, reliable mounting.

$\triangle$The user must ensure that the attachment hardware, the unit carrier and the anchoring at the unit carrier are sufficient to securely support the unit under the given surrounding conditions.
The units are to be mounted in such a way that they can be opened up while mounted. Sufficient space for the cables must be available in the unit near the cable infeed.
Sufficient space is to be kept clear around the units to ensure air circulation and to prevent the build-up of heat resulting from use. The relevant information must be heeded in the case of units ventilated by other means.


When the housing fasteners are opened, the front frame of the housing hinges out upward or downward (depending on the unit version) automatically.

Grounding

EMC measures

All devices are equipped with a metal housing. They comply with safety class I and require a protective earth connection. The connecting cable for the operating voltage must contain a protective earth wire of a sufficient cross section (DIN VDE 0106 part 1, DIN VDE 0411 part 1).

The devices comply with the EU Directive 89/336/EEC (EMC Directive) and provide the required interference immunity. Observe the following when connecting the operating voltage and data cables:

- Use shielded data cables.
- The data and operating voltage cables must be laid separately. They may not be laid together with heavy-current cables or other interference-producing cables.
- The cable thickness must be properly assessed (DIN VDE 0100 Part 540).
- The cable lengths inside the units are to be kept as short as possible to prevent interference. This applies especially to unshielded operating voltage cables. Shielded cables are also to be kept short due to any interference which might be emitted by the shielding.
- Neither excessively long cables nor cable loops may be placed inside the units.
- The connection of the cable shielding to the functional ground (PE) must be as short and low-impedance as possible. It should be made directly to the mounting plate over a large area with a conductive clip:

- The cable shielding is to be connected at both cable ends. If equipotential bonding currents are expected due to the cable arrangement, electrical isolation is to be performed on one side. In this case, capacitive connection (approx. $0.1 \mu \mathrm{~F} / 600 \mathrm{~V} \mathrm{AC}$ ) of the shielding on the isolated side must occur.

Units or unit parts which are no longer needed are to be disposed of in accordance with the regulations in effect in your country.

Chapter 2 Unit description

XC-Board ${ }^{\circledR}$

Central Processing Unit


Control computer with RS485/RS232 interface (C9302-S0)


Control computer with TTY 20mA/RS232 interface (C9302-T0)


Relay cards
Optionally, up to two relay cards with 8 relays each (type C9210) can be connected to the control computer, for example, for activating optical and acoustic signal transmitters.
The following picture shows the control computer with two relay cards:


| Parameterization | The parameterization of the unit is done by means of a menu in the menu display <br> (see chapter 3). |
| :--- | :--- |
| Serial Interface | The serial interface is located on the screw-type terminal strip of the control |
| computer. Depending on the device model, it has the following formats: |  |
|  | C9302-S0 RS485 and RS232 |
|  | C9302-T0 TTY 20 mA and RS232 |


| Chapter 3 |
| :--- |
| Serial Interface |

Select in menu item 1 between the interface formats which are available in the central processing unit.
C9302-S0 RS485 or RS232
C9302-T0 TTY 20mA or RS232
In the interface format RS485, you can select several settings in the menu item 1. Which settings are to be selected is described in chapter 5 .

Parity, baud rate and protocol reply are set in menu items 3, 4 and 6.
In the interface format RS485, the XON/XOFF handshake is active.
In the interface format RS232, the RTS/CTS handshake is active.
If ACK/NAK is selected in menu item 6, the control computer transmits the character ACK $\left(06_{h}\right)$ after receipt of correctly addressed data. In case of an error, it transmits the character NAK (15h).

The address of the control computer (= basic address) is set in menu item 9. The address precedes the data to be displayed in a 2-digit ASCII format.

Commands which apply to all display fields are transmitted to the basic address. Commands for a single display field are transmitted to its field address.

The field address is composed of the basic address and an address offset. Display field H 1 has the offset 1, display field H 2 the offset 2 etc.. The caption of the display fields is documented in the included logic diagram of the XC-Boards ${ }^{\circledR}$.
Example 1: The control computer has the basic address 40 . The field address of the display field H 2 is $40+2=42$.
Example 2: The control computer has the basic address 40 (protocol CR/LF). The brightness of all display fields shall be reduced. The command is $40 \$ \mathrm{~L} 1<\mathrm{CR}><\mathrm{LF}>$.

Example 3: The control computer has the basic address 40 (protocol CR/LF). The display field H 2 shall display the value 123 . The command is $42123<C R><L F>$.

The control computer also reacts on the basic address 00 , independently from the basic address set in menu item 9. It allows the activation of all control computers provided in an XC-Board ${ }^{\circledR}$.
Example: The brightness of all display fields shall be reduced in an XC-Board ${ }^{\circledR}$ with several control computers. The command is (protocol CR/LF): $00 \$ \mathrm{~L} 1<\mathrm{CR}\rangle<\mathrm{LF}>$

In case of an interfacing with the basic address 00 the control computer does not transmit any telegram answer, independently from the setting under menu item 6.

The data to be displayed are transmitted to the control computer in ASCII format, including the field address.
If the protocol CR/LF is selected under menu item 5 , each telegram is to be terminated with the character $<C R>\left(0 D_{h}\right),<L F>\left(0 A_{h}\right)$ or the combination <CR><LF>.

If the protocol STX/ETX is selected, the data including the address are embedded between the characters <STX> $\left(02_{\mathrm{h}}\right)$ and <ETX> $\left(03_{\mathrm{h}}\right)$.

The representation in numeric display fields is right-aligned. The representation in alphanumeric fields is left-aligned.

| Flashing | The flashing of all display fields can be activated by means of the following commands to the basic address of the control computer (protocol CR/LF): |
| :---: | :---: |
|  | \$F1<CR><LF> Flashing on |
|  | \$F0<CR><LF> Flashing off |
|  | If $\$ F 1$ is sent in the data telegram to a field address, the succeeding digits will flash until the end of the data telegram or until \$F0 is sent in the data telegram. |
|  | Flashing of all display fields can also be activated by the H signal on functional input F1 (priority compared to the commands). |
|  | For units provided with an LRD ${ }^{\circledR}$ display flashing is not possible. |
| Brightness | The brightness of all display fields can be reduced by means of the following commands to the basic address of the control computer (protocol CR/LF): |
|  | \$L1<CR><LF> Reduced brightness |
|  | \$L0<CR><LF> Normal brightness |
|  | The brightness of the display fields can also be reduced with an H signal applied to functional input F2 (priority compared to the commands). |
|  | For units provided with an LRD ${ }^{\circledR}$ display brightness reduction is not possible. |
| Blanking | The display can be blanked with the following command (priority over flashing) (protocol CR/LF): |
|  | \$B1<CR><LF> Blanking on |
|  | \$B0<CR><LF> Blanking off |
| Decimal point | In the menu items A1...A8, the decimal point can be set for each display (for numeric display fields only). |
|  | The decimal points may also be activated via the serial interface. For this purpose, you must select setting 0 (no fixed decimal point) in the respective menu item. |
|  | Units with a LRD ${ }^{\circledR}$ display have no decimal points. |
| Leading zero suppression | In menu item C1...C8 you can set if leading zeros are to be displayed or suppressed (for numeric display fields only). If leading zeros shoud be suppressed for units with $L R D^{\circledR}$ display and fixed decimal point (e.g. self-adhesive foil), the corresponding position must be set in menu item A1...A8. |
| Display test | In menu item $F$, you can set whether a short-time display test is automatically carried in all display fields after power-on. |
| LED color | Devices with switchable LED color display the digits in red by default. If the command $\$ \mathbf{A} . .$. is sent in the data telegram, the subsequent digits are displayed in the corresponding LED color: |
|  | \$A0 = red, \$A1 = green, \$A2 = orange |
|  | Example: The display field H3 shall display the value 123 in green. The command is 03\$A1123. |
| Power-on reset | After switching the operating voltage on, minus signs are displayed in all display fields to signalize that the unit is ready for operation. If a display test has been preselected in menu item $F$, it will run beforehand. |

Overflow If more data are transmitted than can be displayed in a display field, a (overflow) is displayed in all digits of the display field.
For alphanumeric display fields, $\bar{m}$ is displayed in all digits of the display field.

Switching output

Relay cards

The devices dispose of a switching output (relay) with potential-free change-over contact (NC, NO, CO).

When setting OFF in menu item $r$, the switching output can be activated with the following command:
\$Q@1 Activate switching contact
$\$ Q @ 0$ Deactivate switching contact
The relay does not switch before the end of the telegram.
When setting 1, 2 or 4 in menu item r, the command \$Q@1 causes a wiping pulse at the switching output with a duration of 1,2 or 4 seconds.
When setting A1, A2 or A4 in menu item r, each telegram to the basic address or a field address causes automatically a wiping pulse at the switching output with a duration of 1, 2 or 4 seconds.

The wiping function is suitable, for example, for activating optical and acoustic signal transmitters.

The status indicator OUT of the control computer is lighted with active switching output.

The optional relay cards are interfaced with the following commands to the basic address of the control computer:

Relay card 1

| \$QA1 | Relay 1 on | \$QI1 | Relay 1 on |
| :---: | :---: | :---: | :---: |
| \$QA0 | Relay 1 off | \$QIO | Relay 1 off |
| \$QB1 | Relay 2 on | \$QJ1 | Relay 2 on |
| \$QB0 | Relay 2 off | \$QJO | Relay 2 off |
| \$QC1 | Relay 3 on | \$QK1 | Relay 3 on |
| \$QC0 | Relay 3 off | \$QKO | Relay 3 off |
| \$QD1 | Relay 4 on | \$QL1 | Relay 4 on |
| \$QDO | Relay 4 off | \$QLO | Relay 4 off |
| \$QE1 | Relay 5 on | \$QM1 | Relay 5 on |
| \$QE0 | Relay 5 off | \$QMO | Relay 5 off |
| \$QF1 | Relay 6 on | \$QN1 | Relay 6 on |
| \$QFO | Relay 6 off | \$QNO | Relay 6 off |
| \$QG1 | Relay 7 on | \$201 | Relay 7 on |
| \$QGO | Relay 7 off | \$Q00 | Relay 7 off |
| \$QH1 | Relay 8 on | \$QP1 | Relay 8 on |
| \$QHO | Relay 8 off | \$QPO | Relay 8 off |

Example: The control computer has the basic address 40 (protocol CR/LF). On relay card 1 relay 5 shall be switched on. The command is: $40 \$ 2 E 1<C R><L F>$

Time－out

Character set for numeric display fields

Character set for alphanumeric display fields

In menu item $t$ ，it is possible to set whether a time－out occurs，and if so，after what time．Time－out means that a minus sign appears in all display fields if the control computer has not received a data telegram to the basic address or a field address after a defined time．

| 20／2B | 2D | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 2C／2E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | － | $\square$ | 1 | 2 | $\exists$ | 4 | 5 | Б | 7 | 日 | 9 |  |
| 41／61 | 42／62 | 43 | 44／64 | 45／65 | 46／66 | 47／67 | 48 | 49 | 4A／6A | 4C／6C | 50／70 | 55 |
| A | $b$ | ［ | $d$ | E | F | L | H | 1 | 」 | L | P | 4 |
| 59／79 | 5F | 63 | 68 | 69 | 4E／6E | 4F／6F | 52／72 | 54／74 | 75 | 58／78 | other |  |
| 4 |  | ［ | $h$ |  | $n$ | $\square$ | $r$ | $t$ |  | － | 三 |  |


|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | ！ | ： | ＊ | \＄ | $\because$ | \％ | ${ }^{7}$ | C | $\bigcirc$ | 安 | $\div$ | F | $\cdots$ | ： | $\because$ |
| 3 | E | 1 | $\cdots$ | $\because$ | 4 | ＂： | $\because$ | 7 | \％ | $\cdots$ | \＃＇ | $\stackrel{7}{7}$ | $\because$ | $\cdots$ | $\cdots$ | $\because$ |
| 4 | \％ | H | E | $\cdots$ | $\ldots$ | E－ | $\cdots$ | \％ | $\cdots$ | I | ． | C | $\ldots$ | 1 | 1 | \％ |
| 5 | P | O | \％ | $\cdots$ | T | 1 | 1 | 1 | Y | \％ | $\because$ | ！ | $\vartheta$ | I | $\therefore$ | $\ldots$ |
| 6 | \＃ | $\cdots$ | \％ | ！．： | － | ＂ | $\stackrel{+}{+}$ | $\pm$ | \％ | I | ． | ： | 1 | T | ！ | $\cdots$ |
| 7 | $F$ | 7 | 7 | $\cdots$ | $t$ | \％ | \％ | 1 | $X$ | $\cdots$ | $\because$ | $\because$ | ！ | \％ | $\because$ | $\pm$ |
| 8 | ＋ | $\cdots$ | $\pm$ | ： | $\cdots$ | $\pm$ | $\stackrel{4}{*}$ | \％ | \＃ | $\pm$ | $\pm$ | $\because$ | 3 | 3 | \％ | \＃ |
| 9 | $\pm$ | \％ | Fi | $\dot{\otimes}$ | $\cdots$ | $\cdots$ | \％ | ： | $\cdots$ | \％ | $\ddot{\square}$ | $\pm$ | $\stackrel{\square}{ }$ | $\div$ | P | $\dot{+}$ |
| A | $\stackrel{\square}{*}$ | $\stackrel{\square}{1}$ | $\ddot{\square}$ | $\dot{\square}$ | \％ | ¢ | ＂ | ＂ | $\therefore$ | \＃＂ | ＂\＃ | F | \％ | ！ | $\therefore$ | $\because$ |
| B | $\stackrel{\text { ® }}{ }$ | \％ | $\underset{\sim}{2}$ | 1 | † | 4 | $\stackrel{+}{+}$ | ＊ | $\cdots$ | ＂ | ＂ | ： | ＂ | ＂ | ＂ | E |
| C | i | $\cdots$ | P | ＂ | If | 플 | ¢ | $\cdots$ | 1 | H | C | II | 1 | H | \％ | I |
| D | F | $\cdots$ | ＇T | $\cdots$ | \％ | Y | 1 | 4 | 11 | 11 | \％ | 4 | \％ | $\cdots$ | 1 | $\cdots$ |
| E | ！ | $\cdots$ | ＂＇ | T | ت | $\cdots$ | $\ldots$ | T | ？ | $\pm$ | \％ | \％ | $\cdots$ | m | ＂ | ！ |
| F | $\cdots$ | $\pm$ | $\because$ | $\dot{\square}$ | ＂ | ： | $\cdots$ | $\because$ | $\because$ | ： | ．． | ＂ | ＂ | $\dot{*}$ | ： | ： |


| Chapter 4 | Parameterization |
| :--- | :--- |
| Menu | The parameterization of the devices is carried out in a menu of the menu display. |
|  | In normal operation, $Q n /$ inE is shown in the menu display. |


| Menu item |  | Settings | Menu display |
| :---: | :---: | :---: | :---: |
| 1 | Serial | RS232 | 1 2ヨコ |
|  | Interface | RS485 | 1 485 |
|  |  | RS485（4－wire bus） | 14854 |
|  |  | RS485（2－wire bus） | 14852 |
|  |  | TTY 20mA | 1 tty |
| 2 | Data format | 7 bit with even or odd parity | 276 it |
|  |  | 8 bit with or without parity＊ | 2 昍 เ |
| 3 | Parity | No parity＊ | $\exists$ nanE |
|  |  | odd parity | $\exists$ add |
|  |  | even parity | 3 EuEn |
| 4 | Baud rate | 1200 | 41200 |
|  |  | 2400 | 42400 |
|  |  | 4800 | 4 4 4 ¢ |
|  |  | 9600＊ | $4950 \square$ |
|  |  | 19200 | 4192 |
| 5 | Protocol | CR／LF＊ | 5 ［rLF |
|  |  | STXIETX | 5 5－E |
| 6 | protocol reply | No protocol reply＊ | 5 manE |
|  |  | ACK／NAK | Б AcnA |
| 9 | Address | Address 1 | $9 \quad 11$ |
|  |  | $\downarrow$ | $\downarrow$ |
|  |  | Address 10＊ | 910 |
|  |  | $\downarrow$ | $\downarrow$ |
|  |  | Address 90 | 9 90 |
| r | Switching output | No wiping pulse＊ | $r$ DFF |
|  |  | Wiping pulse 1 sec | $r$ |
|  |  | Wiping pulse 2 sec | $r \quad$ 己 |
|  |  | Wiping pulse 4 sec | $r 4$ |
|  |  | Automatic wiping pulse 1 sec |  |
|  |  | Automatic wiping pulse 2 sec | $r$ A2 |
|  |  | Automatic wiping pulse 4 sec | $r \quad 74$ |
| t | Time－out | No time－out＊ | t $\quad$ I |
|  |  | Time－out after 2 s | $t \quad 2$ |
|  |  | Time－out after 4 s | t 4 |
|  |  | Time－out after 8 s | t 日 |
|  |  | Time－out after 16 s | t 15 |
|  |  | Time－out after 32 s | t 32 |
|  |  | Time－out after 64 s | t 54 |
|  |  | Time－out after 128 s | t 12日 |


| Menu item |  | Settings | Menu display |
| :---: | :---: | :---: | :---: |
| A1 | $\begin{aligned} & \hline \text { Decimal point } \\ & \text { display field } \mathrm{H} 1 \end{aligned}$ | No decimal point＊ | F I $\square^{\text {a }}$ |
|  |  | Decimal point digit C1 | A 1 |
|  |  | Decimal point digit C2 | R1 2 |
|  |  | $\downarrow$ | $\downarrow$ |
|  |  | Decimal point digit C8 | 月1 日 |
| A2 | Decimal pointdisplay field H 2 | No decimal point＊ | H2 $\quad$ ？ |
|  |  | Decimal point digit C1 | A2 |
|  |  | Decimal point digit C2 | 月2 2 |
|  |  | $\downarrow$ | $\downarrow$ |
|  |  | Decimal point digit C8 | A2 日 |
|  | ת | $\sqrt{3}$ | $\checkmark$ |
| A8 | $\begin{aligned} & \hline \text { Decimal point } \\ & \text { display field H8 } \end{aligned}$ | No decimal point＊ | 7日 $\quad$－ |
|  |  | Decimal point digit C1 | 阳 |
|  |  | Decimal point digit C2 | 阳 2 ． |
|  |  | $\downarrow$ 仡 | $\downarrow$ |
|  |  | Decimal point digit C8 | 月日 且 |
| C1 | Leading zeros display field H 1 | Leading zeros not displayed＊ | ［1 |
|  |  | Leading zeros displayed | ［ 1 ロロロロ |
| C2 | $\begin{aligned} & \hline \text { Leading zeros } \\ & \text { display field } \mathrm{H} 2 \end{aligned}$ | Leading zeros not displayed＊ | ［2 吅 |
|  |  | Leading zeros displayed | ［2 80ロロ |
|  | $\sqrt{3}$ | $\sqrt{3}$ | $\checkmark$ |
| C8 | Leading zerosdisplay field H8 | Leading zeros not displayed＊ | ［日 吅 |
|  |  | Leading zeros displayed | ［日 70．0 |
| F | Display test | No display test at power－on＊ | F－－－－ |
|  |  | Display test at power－on | F 㫜昍 |
| U | Saving | Saving parameters＊（Set） | 4 5Et |
|  |  | Not saving parameters（Escape） | $\square$ ESL |
|  |  | Resetting to the default settings（Default） | 4 dEF |


| Chapter 5 | Technical data |
| :---: | :---: |
| Switching output | Maximum switching voltage 30 V AC／DC |
|  | Maximum switching current 500 mA （resistive load） |
| Screw clips | clamping range $\quad 0,14 \ldots 1,5 \mathrm{~mm}^{2}$ |
| Ambient conditions | Operating temperature $\quad 0 . .55{ }^{\circ} \mathrm{C}$ |
|  | Storage temperature－30．．．85 ${ }^{\circ} \mathrm{C}$ |
|  | Relativ humidity max． 95 \％（non－condensing） |

Chapter 6 Notes on RS485 interface configuration

## Menu settings

Data lines
The interface format RS485 allows the settings $485,4 \boxed{5} 4$ and $4 В 5.2$ in the menu item 1 (see chapter 4). The selected setting depends on whether the protocol reply is to be sent by the unit:


If the unit should not send a protocol reply (normal case), application example A applies for activating one or more units.

If a protocol reply is expected, a differentiation has to be made whether one single unit or more units are to be activated. If one single unit is activated, application example $B$ is valid.

If several units are to be activated, a bus wiring is necessary. You have to differentiate, if a 4-wire bus (full-duplex) or a 2-wire bus (half-duplex) is used. Application example $C$ applies for 4 -wire bus and application example $D$ applies for 2-wire bus.

To achieve the highest possible interference immunity, the data lines of the RS485 have to be terminated on both ends. The required resistors are provided in the unit and can be connected on the screw terminal strip with the jumpers S1 (Tx) and S2 (Rx) (see chapter 2, block diagram).
The polarization of the data lines must be ensured by means of the master.
For the data lines, you always have to ensure that:

- Shielded twisted-pair cables of sufficiently large cross-section are used.
- The shielding is connected on both line ends.
- For the signal ground (GND) use a wire pair short-circuited on both ends in the data cable. The shielding may not be used as the signal ground.
- A twisted core pair is used each for Tx+ and Tx- and for Rx+ and Rx-. Nonobservance of this instruction causes the protective function of the twisted-pair cable to be lost.
- Improperly terminated data lines cause faults during data transfer.

Application example A

Application example B

Application example C

Application example D

Setting in menu item 1: RS485
Setting in menu item 6: No protocol reply


Setting in menu item 1: RS485
Setting in menu item 6: ACK/NAK (recommended)


Setting in menu item 1: RS485.4
Setting in menu item 6: ACK/NAK (recommended)


Setting in menu item 1: RS485.2
Setting in menu item 6: ACK/NAK (recommended)


