Esiebert

Operating instructions
C9302-K0
Control computer for XC-Boards ${ }^{\circledR}$ with Profibus DP interface

GERMANY	FRANCE
Siebert Industrieelektronik GmbH	Siebert France Sarl
Siebertstrasse, D-66571 Eppelborn	33 rue Poincaré, BP 90 334, F-57203 Sarreguemines Cédex
Phone +49 (0)6806 980-0, Fax +49 (0)6806 980-999	Phone +33 (0)3 8798 63 68, Fax +33 (0)3 87986394
www.siebert.de, info@siebert.de	www.siebert.fr, info@siebert.fr
AUSTRIA	NETHERLANDS
Siebert Österreich GmbH	Siebert Nederland B.V.
Mooslackengasse 17. A-1190 Wien	Korenmaat 12b, NL-9405 TJ Assen
Phone +43 (0)1 890 63 86-0, Fax +43 (0)14 890 63 86-99	Phone +31 (0)592-305868, Fax +31 (0)592-301736
www.siebert-oesterreich.at, info@siebert-oesterreich.at	www.siebert-nederland.nl, info@siebert-nederland.nl
	SWITZERLAND
	Siebert AG
© Siebert Industrieelektronik GmbH	Bützbergstrasse 2, Postfach 91, CH-4912 Aarwangen
	Phone +41 (0)62 922 18 70, Fax +41 (0)62 922 33 37
	www.siebert.ch, info@siebert.ch

This operation manual has been prepared with the utmost care. However, we do not accept any liability for possible errors. We always appreciate your suggestions for improvement, corrections, comments and proposals. Please contact us: redaktion@siebert.de
Siebert ${ }^{\circledR}, \mathrm{LRD}^{\circledR}$ and XC -Board ${ }^{\circledR}$ are registered trademarks of Siebert Industrieelektronik GmbH. All other product names mentioned herein may be the trademarks or registered trademarks of their respective owners.
We reserve the right to make alternations to the technical data and delivery options without notice. - All rights reserved, including the rights of translation. No part of this document may in any form or by any means (print, photocopy, microfilm or any other process) be reproduced or by using electronic systems be processed, copied, or distributed without our written permission.

Table of contents

Chapter 1	Safety precautions	Important information Safety Intended use Mounting and installation Grounding EMC measures Disposal
Chapter 2	Unit description	XC-Board ${ }^{\text {® }}$ Central Processing Unit Relay cards Parameterization Profibus interface Menu display Menu buttons Status indicators
Chapter 3	Control	Configuration in the master Configuration example Data format Integer Data format ASCII Flashing LED color Blanking Brightness Decimal point Leading-zero suppression Display test Power-on reset Relay cards Character set for numeric display fields
		Character set for alphanumeric display fields Error detection
Chapter 4	Parameterization	Menu display Menu operation Menu table
Chapter 5	Technical data	Ambient conditions

Chapter 1

 Safety precautions
Important information

Safety

Intended use

Mounting and installation

Read these operating instructions before starting the unit. They provide you with important information on the use, safety and maintenance of the units. This helps you to protect yourself and prevent damage to the unit.

1Information intended to help you to avoid death, bodily harm or considerable damage to property are highlighted by the warning triangle shown here; it is imperative that this information be properly heeded.
The operating instructions are intended for trained professional electricians familiar with the safety standards of electrical technology and industrial electronics.

Store these operating instructions in an appropriate place.
The manufacturer is not liable if the information in these operating instructions are not complied with.

\triangleComponents inside the units are energized with electricity during operation. For this reason, mounting and maintenance work may only be performed by professionally-trained personnel while observing the corresponding safety regulations.

The repair and replacement of components and modules may only be carried out by the manufacturer for safety reasons and due to the required compliance with the documented unit properties.

The units do not have a power switch. They are operative as soon as the operating voltage is applied.

The units are intended for use in industrial environments. They may only be operated within the limit values stipulated by the technical data.
When configuring, installing, maintaining and testing the units, the safety and accident-prevention regulations relevant to use in each individual case must be complied with.

Trouble-free, safe operation of the units requires proper transport, storage, installation, mounting and careful operation and maintenance of the units.

The attachment options for the units were conceived in such a way as to ensure safe, reliable mounting.

The user must ensure that the attachment hardware, the unit carrier and the anchoring at the unit carrier are sufficient to securely support the unit under the given surrounding conditions.
The units are to be mounted in such a way that they can be opened up while mounted. Sufficient space for the cables must be available in the unit near the cable infeed.

Sufficient space is to be kept clear around the units to ensure air circulation and to prevent the build-up of heat resulting from use. The relevant information must be heeded in the case of units ventilated by other means.

When the housing fasteners are opened, the front frame of the housing hinges out upward or downward (depending on the unit version) automatically.

Grounding

EMC measures

All devices are equipped with a metal housing. They comply with safety class I and require a protective earth connection. The connecting cable for the operating voltage must contain a protective earth wire of a sufficient cross section (DIN VDE 0106 part 1, DIN VDE 0411 part 1).

The devices comply with the EU Directive 89/336/EEC (EMC Directive) and provide the required interference immunity. Observe the following when connecting the operating voltage and data cables:

- Use shielded data cables.
- The data and operating voltage cables must be laid separately. They may not be laid together with heavy-current cables or other interference-producing cables.
- The cable thickness must be properly assessed (DIN VDE 0100 Part 540).
- The cable lengths inside the units are to be kept as short as possible to prevent interference. This applies especially to unshielded operating voltage cables. Shielded cables are also to be kept short due to any interference which might be emitted by the shielding.
- Neither excessively long cables nor cable loops may be placed inside the units.
- The connection of the cable shielding to the functional ground (PE) must be as short and low-impedance as possible. It should be made directly to the mounting plate over a large area with a conductive clip:

- The cable shielding is to be connected at both cable ends. If equipotential bonding currents are expected due to the cable arrangement, electrical isolation is to be performed on one side. In this case, capacitive connection (approx. $0.1 \mu \mathrm{~F} / 600 \mathrm{VAC}$) of the shielding on the isolated side must occur.

Units or unit parts which are no longer needed are to be disposed of in accordance with the regulations in effect in your country.

Chapter 2

XC-Board ${ }^{\circledR}$

Unit description

The control computer C9302-K0 serves for the activation of numeric or alphanumeric display fields in XC-Boards ${ }^{\circledR}$ via a Profibus-DP interface.

The following picture shows an example for an XC-Board ${ }^{\circledR}$ with four display fields:

The electrical structure of the XC-Boards® is documented in the included logic diagram. The following picture shows the general structure of the XC-Boards ${ }^{\circledR}$:

Central Processing Unit

The control computer takes over the conversion from binary format to decimal format in all display fields.
In the master, each display field is defined as an individual module.
Central Processing Unit

Optionally, up to two relay cards with 8 relays each (type C9210) can be connected to the control computer, for example, for activating optical and acoustic signal transmitters.
The following picture shows the control computer with two relay cards:

The parameterization of the unit is done by means of a menu in the menu display (see chapter 3).

Bus errors may result in personal injury or material damage. Therefore it is to observe that activating the menu may cause a bus error.

The Profibus interface is located on the SUB-D socket of the control computer. It has the following assignment:

Pin	1	2	3	4	5	6	7	8	9
Signal	-	-	B	-	GND	+5 V	-	A	-

The units are Profibus-DP slaves according EN 50170.
The baud rate is automatically recognized. It can reach up to 12 Mbaud.
The GSD file "SIEB0B4C.GSD" on disc is included in the delivery.
The control unit is defined as 'C9330 Control unit for XC-Boards' in the hardware configuration.
The address is set by means of the rotary code switches of the control computers (00...99).

In the case of a bus error, minus signs appear in the display.
The menu display represents a menu for unit parameterization (see chapter 3).
In normal operation, Z ח E is shown in the menu display.
The menu can be operated by means of the menu buttons (see chapter 3).
The status indicators (LED) of the central processing unit have the following function:

PWR The Profibus interface is supplied with power.
BUS The unit is parameterized and identified as a Profibus user.
DATA The information to be represented is updated (short light-up).

Chapter 3

Control

Configuration in the master

Configuration example

ABus errors may result in personal injury or material damage. Therefore it is to observe that activating the menu may cause a bus error.

During the hardware configuration, a module must be defined for each display field and for the optionally available relay cards in accordance with the desired operating mode.

The control unit is defined as 'C9330 Control unit for XC-Boards' in the hardware configuration.
For the data format ASCII, the respective module has to be selected according to the number of digits of the display field:

Display field with one digit
Display field with 2 digits
Display field with 3 digits
\downarrow
Display field with 8 digits

Modul ASC_1
Modul ASC ${ }^{-}$2
Modul ASC_3
\downarrow
Modul ASC_8

The number of digits in the INTEGER data format has no significance.
The modules are defined in the same order as in the logic diagram of the XC-Boards ${ }^{\circledR}$. The control computer links the first module to the first display field $(\mathrm{H} 1)$, the second module to the second display field $(\mathrm{H} 2)$ etc..
The optionally available relay cards are defined as last module RELAIS_OUT.
In the menu, the data format has to be selected for each display field. For display fields which are defined in the master as modules ASC_1...ASC_8, the setting ASC must be selected in the menu item d1...d8. For display fields which are defined in the master as INTEGER module, the data format UI16, SI16, UI24 or SI24 must be selected.
The control computer only accepts the configuration by the master if the hardware definition in the master, the number of display fields indicated in the logic diagram of the XC-Board® and the menu settings for all display fields as well as the existing relay cards are correct.

In the XC-Board® (see chapter 1) shown as an example, the display field H 1 should be operated with the data format ASCII and the display fields $\mathrm{H} 2, \mathrm{H} 3$ and H4 with the INTEGER data format. The configuration in the master is the following:
ASC_5
INTEGER
INTEGER
INTEGER
RELAIS_OUT (if relay cards are projected)
The following settings have to be done in the menu:
dI R5L
d己 Uا II
dヨ Uا 15
d4 Lا 15
The relay cards have been parameterized before delivery and must not be set.

INTEGER data format

UI16/SI16

UI24/SI24

Data transmission is carried out with 4 bytes per display field.
Byte 0 contains the formatting of the device. The following bytes are displayed in INTEGER data format.

	Byte 0						Byte 1										Byte 2						Byte 3									
7	6	5			2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6		5	4	3	2	1	0
			orma	attin							rese																	LSB				

The formatting for the brightness, flashing of all display fields, retrace blanking and display test can be set in byte 0 of the display field H 1 . The bits in the other display fields should be set to 0 in byte 0 .
Depending on the data format, the maximum value ranges are the following:

```
Ul16 0...65535
SI16 -32768...32767
UI24 0...16777215
SI24 -8388608...8388607
```

If the transferred value exceeds the value range, then the following with appear on the display: \quad (upper range) or \llcorner (lower range).

ASCII data format

Display field with one digit

Display field with 2 digits

Display field with 3 digits

Display field with 4 digits

Display field with 5 digits

Display field with 6 digits

Display field with 7 digits

Display field with 8 digits

For the data transmission, the number of bytes depends on the number of digits of the display field.

Byte 0 contains the formatting of the device. The following bytes are displayed in ASCII data format (C8...C1).

Byte $0 \quad$ Byte 1		Byte 2	Byte 3				
Format.	C1						
Byte 0	Byte 1						
Format.	C2	C1					
Byte 0	Byte 1	Byte 2		Byte 4			
Format.	C3	C2	C1				
Byte 0	Byte 1	Byte 2	Byte 3				
Format.	C4	C3	C2	C1	Byte 5		
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4		Byte 6	
Format.	C5	C4	C3	C2	C1		
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5		
Format.	C6	C5	C4	C3	C2	C1	
Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Format.	C7	C6	C5	C4	C3	C2	C1

The formatting for the brightness, flashing of all display fields, retrace blanking and display test can be set in byte 0 of the display field H 1 . The bits in the other display fields should be set to 0 in byte 0 .

LED color	The LED color can be set in byte 0 bit 7 and bit 6 . (only for displays that have selectable LED colors).
Blanking	If in byte 0 of the display field H 1 bit 6 is set, all display fields are blank (priority over flashing). This is not possible for displays with selectable LED colors.
Brightness	If in byte 0 of the display field H 1 bit 4 is set, the brightness of all display fields will be reduced. (not possible for $L R D^{\circledR}$ displays).
Decimal point	In the menu items A1...A8, the decimal point can be set for each display (for numeric display fields only).
	The decimal point can also be activated by setting bits $2 \ldots 0$ in byte 0 . Setting 0 (no decimal point) should be chosen in the appropriate menu point (A1...A8).
	If a decimal point has been set in the menu points $A 1 \ldots A 8$, this decimal point will have priority.
	Units with a LRD® display have no decimal points.
Leading zero suppression	In menu item C1...C8 you can set if leading zeros are to be displayed or suppressed (for numeric display fields only). If leading zeros should be suppressed for units with $L R D ®$ display and fixed decimal point (e.g. self-adhesive foil), the corresponding position must be set in menu item A1...A8.
Display test	In menu item F, you can set whether a short-time display test is automatically carried out in all display fields after power-on.
	The display test can be activated by setting bits 7 and 6 in byte 0 of the display field.
	The display test has priority over flashing and blanking.
Power-on reset	After power-on, minus signs are displayed to signalize that the unit is ready for operation. If a display test has been preselected in menu item F, it will run beforehand.

Relay cards
The optionally available relay cards are defined in the last module RELAIS_OUT with 2 byte regardless of how many relays have been implemented.

RELAIS_OUT

Character set for numeric display fields

Character set for alphanumeric display fields

Error detection

20／2B	2D	30	31	32	33	34	35	36	37	38	39	2C／2E
	－	\square	1	2	3	4	5	\square	7	日	9	
41／61	42／62	43	44／64	45／65	46／66	47／67	48	49	4A／6A	4C／6C	50／70	55
月	b	［	d	E	F	\square	H	1	」	L	P	4
59／79	5F	63	68	69	4E／6E	4F／6F	52／72	54／74	75	58／78	other	
4	－	c	h	1	n	\square	r	t	4	－	三	

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2		！	$:$	＊	\＄	\because	\％	F	¢	\bigcirc	安	\ddagger	F	\cdots	＂	\cdots
3	I	\pm	\cdots	\cdots	4	\％	\cdots	\because	\cdots	\cdots	＂	$\stackrel{7}{7}$	\because	\cdots	r	\because
4	\＃	$\dot{\theta}$	\％	\cdots	\％	－	－	\ldots	1	T	．	\because	1	1	1	0
5	＂＇	\％	\％	\cdots	T	！	I	1	\％	＇	$\underline{\square}$	\ldots	\because	I	\therefore	\cdots
6	\＃	＝	\％	！．：	C	：	$\stackrel{+}{+}$	\pm	F	\pm	．	K	\square	T	1	\％
7	\cdots	T	7	＝	t	！	\％	0	Y	4	\underline{Z}	\because	！	？	\because	$\dot{\square}$
8	\％	$\ddot{\square}$	\pm	\cdots	\because	$\stackrel{3}{4}$	$\stackrel{4}{*}$	\cdots	\pm	\because	\pm	\％	3	3	\cdots	$\stackrel{*}{*}$
9	E	\％	E	$\stackrel{\text { ¢ }}{\square}$	\because	$\stackrel{\square}{4}$	\cdots	：	：	\％	！	＋	＋	¢	P	\dot{F}
A	$\stackrel{\text { ¢ }}{*}$	$\stackrel{\square}{1}$	$\ddot{\square}$	：	$\stackrel{r}{1}$	$\ddot{\square}$	＂	＂	\therefore	\＃\＃．	＂	F	\％	！	\because	\because
B	$\stackrel{\text { ® }}{ }$	$\stackrel{\text { \％}}{ }$	$\underset{\sim}{*}$	1	†	4	\ddagger	4	\cdots	＂	＂	＂	＂	＂	＂	E
C	\cdots	E	\％	＂	If	E	\％	\cdots	1	1	\cdots	I＇	1	H	T	1
D	P＇	\cdots	T	！	\％	¢	1	＋	11	1	］	H	\％	\cdots	11	9
E	\％	F	＂	TI	\＃	\cdots	！	T．	F	：	\％	\％	ϕ	m	\＃	！
F	\cdots	\pm	\because	\because	＂	＂	\because	\cdots	$\stackrel{\square}{*}$	＂	－	＂	＂	2	＂	＂

If the unit detects an error， $\operatorname{Err} \ldots$ will appear in the menu display．

Fault message	Cause	Elimination
$E_{r r} /$	The data format that is projected in the master and the data format chosen in the menu do not conform with each other．	Choose the same data format in each display field menu that is projected in the master．
The hardware does not comply with the projected modules．	The amount and type of module has to be adjusted to the equipment configuration （see function plan）．	

Chapter 4

Parameterization

The parameterization of the devices is carried out in a menu of the menu display．

Bus errors may result in personal injury or material damage．Therefore it is to observe that activating the menu may cause a bus error．

In normal operation，$Z \square \boldsymbol{n} E$ is shown in the menu display．
To reach the menu，press both menu buttons simultaneously（approx． 1 sec．）until an audible signal is heard and menu item 01 appears in the menu display．Now， you can navigate in the menu as follows：

Next setting
Page menu items forward
Previous setting
Page menu items backward
Next setting
Page settings forward
Previous setting
Page settings backward
Shortly press key［ \downarrow ］
Press key［ \downarrow ］long
Double click on key［ \downarrow ］
Double click on［ \downarrow ］and keep it pressed
Shortly press key［ \leftrightarrow ］
Press key［ \leftrightarrow ］long
Double click on key［ \leftrightarrow ］
Double click on $[\Theta]$ and keep it pressed
The menu ends in menu item U with the button［ \downarrow ］．The settings made are either saved（set），not saved（escape）or the factory settings are reset，depending on the setting selected in menu item U ．
Cancelling the menu without saving the settings made is possible by pressing both menu buttons longer（approx． 1 sec．）or will occur automatically if 60 seconds pass without a menu button being pressed．
Once the menu is closed，the unit behaves in the same manner as when the operating voltage was applied．

In the menu mode the character Ξ appears in all display fields．Control of the display is not possible in menu mode．

The menu items are displayed in the following menu table．The factory settings are marked with an＊．Individual menu items or settings can be suppressed in another menu item，depending on the unit version or setting．

Menu item		Settings	Menu display
d1	Data format display field H1	Unsigned Integer $16 \mathrm{Bit}^{*}$	d I Uا I6
		Signed Integer 16 Bit	d）51 16
		Unsigned Integer 24 Bit	d 1 Ul 24
		Signed Integer 24 Bit	d 15124
		ASCII	d 1 R5［
d2	Data format display field H2	Unsigned Integer 16 Bit *	dᄅ Uا 16
		Signed Integer 16 Bit	d2 51 16
		Unsigned Integer 24 Bit	d2 Uا 24
		Signed Integer 24 Bit	d2 51 24
		ASCII	dᄅ R5［
	$\sqrt{8}$	Ω	Ω
d8	Data format display field H8	Unsigned Integer 16 Bit＊*	d日 Uا I6
		Signed Integer 16 Bit	d日 51 15
		Unsigned Integer 24 Bit	d日 Uا 24
		Signed Integer 24 Bit	d日 5124
		ASCII	d日 R5［

Chapter 5

Technical data

Ambient conditions
Operating temperature $\quad 0 . .55^{\circ} \mathrm{C}$
Storage temperature-30.. $85^{\circ} \mathrm{C}$
Relative humidity max. 95 \% (non-condensing)

